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ABSTRACT 

 

Microplastic pollution poses a dangerous, “invisible” threat to both aquatic ecosystems and human health. Most 

studies rely on complex chemical methods for microplastic detection. However, by combining machine learning 

algorithms with a Raspberry Pi, this research paper proposes an innovative approach to classifying and quantifying 

microplastics. We developed a low-cost, portable prototype device that captures microscopic images for in-situ 

microplastic detection. Our algorithm makes use of Convolutional Neural Networks (CNNs) to recognize and 

categorize microplastics in their environment. In addition to automating and accelerating the detection process, 

CNNs capture important visual traits that allow precise categorization and quantification. The model's remarkable 

performance, with a 97% accuracy rate, highlights its potential for classifying and measuring microplastics in 

aquatic settings. In the future, this device could lend itself to other such significant environmental monitoring needs, 

and to larger-scale microplastic detection. 

 

Index Terms—Microplastic, Detection, Classification, Machine Learning, CNN 

 

 

INTRODUCTION 
 

Every year, over 400 million tons of plastic are generated, of which >8 million tons are dumped into the ocean [1]. Plastics 

do not degrade easily; they persist for over 100 years and thus have the potential to accumulate and contaminate their 

environments. In the past decade, microplastic pollution has emerged as an “invisible” threat to ecosystems and human 

health.  

 

Microplastics i.e. plastics <5mm long [2] are formed either by design or by the gradual fragmentation of plastic waste [3].  

 

Microplastics are highly ubiquitous – they have been found in marine environments, soil, and even lung tissue [4]. They 

collect in sediment and water columns in aquatic environments, where they act as harmful chemical reservoirs for heavy 

metals and pesticides. They pose a risk to human health, behaving as endocrine and immune system disruptors [5].  

 

Detecting microplastics without labour-intensive techniques such as visual classification, chemically advanced techniques 

such as Raman Spectroscopy, or equipment such as microscopes is a challenge, given their minute size.  

 

However, developments in artificial intelligence in the last decade have opened up new avenues for microplastic detection. 

Convolutional Neural Network (CNN) is a straightforward classification algorithm that can be modified for object detection 

tasks in photos and videos.   

 

CNN can effectively detect and categorize microplastic particles in water samples based on their characteristics, such as 

size, shape, and texture, by utilizing machine learning algorithms. CNN, in contrast to deep learning techniques, does not 

need a protracted training phase, which makes it particularly useful in circumstances with little labelled training data. This 

research paper focuses on deploying an innovative, low-cost microplastic detection device based on the CNN framework 

and subsequently analyzing its effectiveness. The key objectives of this study can be summarized as follows: 

 

The key objectives of this study can be summarized as follows: 

 

 Proposing a deep-learning model for easy identification and classification of microplastics 

 Developing a portable, in-situ, low-cost & real-time microplastic detection device that can be used on the field 
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Fig 1 Plastics and Primary Microplastics by Region 

 

(Image Credit: J. Boucher and D. Friot, “Primary microplastics in the oceans: A global evaluation of sources,” IUCN, Feb. 

2017, doi: https://doi.org/10.2305/iucn.ch.2017.01.en.) 

 

 
 

Fig 2: Sources of Primary Microplastics 

 

(Image credit: M. Armstrong, “Infographic: Where Do the Oceans’ Microplastics Come From?,” Statista Infographics, Aug. 

11, 2022. https://www.statista.com/chart/17957/where-the-oceans-microplastics-come-from/) 

 

 
 

Fig 3: Plastic production by polymer type 

 

https://doi.org/10.2305/iucn.ch.2017.01.en
https://www.statista.com/chart/17957/where-the-oceans-microplastics-come-from/
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(Image Credit: M. Malankowska, C. Echaide-Gorriz, and J. Coronas, “Microplastics in marine environment – sources, 

classification, and potential remediation by membrane technology – A review,” Environmental Science: Water Research & 

Technology, 2020, doi: https://doi.org/10.1039/d0ew00802h.) 

 

LITERATURE REVIEW 

 

Microplastics have been found everywhere. Filho et al. [6] detected microplastics in milk using micro-Raman technology 

involving enzymatic and digestion steps. They categorized the microplastics detected based on polymer type. Similarly, 

Ragusa et al. [7] discovered microplastics in the human placenta using micro-Raman spectroscopy. Filter membranes were 

inspected, morphologically characterized, and analyzed using Raman Microspectroscopy. The spectra were compared with 

those in the SLOPP Library of Microplastics and KnowItAll software, with similarities of over 80 of the Hit Quality Index 

(HQI) considered satisfactory. Zhang et al. [8] detected microplastics in deep-sea sediments in the western Pacific Ocean 

using micro-Fourier-transform infrared spectroscopy, which involves comparing the absorption spectra of infrared radiation 

in samples. They discovered that the most commonly detected polymers were poly(propylene-ethylene) copolymer (40.0%) 

and polyethylene terephthalate (27.5%). Cocciaro et al. [9] meanwhile, used infrared photo-diode sensors to detect floating 

microplastics (polyethylene and polyurethane) with an approximate ~90% accuracy. These techniques are, however, 

expensive, fairly time-consuming, and difficult to scale up. 

 

There have been recent advancements in using machine learning to detect microplastics – per Lin et al., [10] artificial 

intelligence is confirmed to improve the efficiency and accuracy of microplastic detection.  

 

In a study conducted by Yurtsever et al., [11] they developed a CNN model using GoogLeNet architecture to detect 

microplastics. They created a dataset using microscope images in a number of pure and wastewater environments. The 

model was trained on this dataset of 42,928 images and yielded a rather high accuracy of 89% for microbeads in wastewater 

and 97% in pure water. Meanwhile, Silva et al. [12] utilized a slightly different approach for detecting and classifying 

microplastics based on polymer type. They used Fourier Transform Infrared Imaging Systems to detect and machine 

learning models such as Partial Least Squares Discriminant Analysis (PLS-DA) (multivariate classification technique 

mathematically correlating independent matrix to parameters of interest) and Soft Independent Modeling of Class 

Analogies (SIMCA) (focused on analogies within a class) to classify. They found that the PLS-DA model was far superior 

to the SIMCA model as it was able to provide a more holistic understanding of the plastic classes. In a study by Chaczko et 

al., [13] they built a Neural Network (NN) using tensorflow. Interestingly, they trained their ML model on hyperspectral 

images of textiles rather than microplastics, in which samples were considered “suspicious contaminants”. Their model 

achieved 95% accuracy, however, it is unclear how the NN will perform when given actual images of microplastics. Zhu et 

al. [14] used a deep-learning enabled holographic classification system; their HC-CNN showed superior performance when 

cross-validated against most other models (on the same dataset), except against the deep-transfer learning model by Zhu et 

al. [15] built on the CompNet network which showed great potential, especially for small, imbalanced datasets. In another 

study by Odei Garcia-Garin et al. [16] they used CNN models to measure floating marine macro-litter. They used aerial 

photographs to collect data and deployed a web-based application that enables users to spot FMML in images of the sea 

surface. The accuracy of cross-validation (done using 90% of the photos for training and 10% for testing) and image 

classification (performed using all the images for training and testing the model) was 0.81 and 0.85, respectively. However, 

the key difference is that FMML can be viewed without a microscope, hence creating a dataset is far easier. Wang et al. 

[17] developed an improved region-based convolutional neural network (R-CNN) model for identifying and detecting 

microplastics. The model uses residual network-50 as the backbone and feature pyramid networks (FPN) module for multi-

scale target detection. The improved R-CNN model achieved an average confidence of 99% in detecting microplastic 

particles in marine environments. The model identified polystyrene microplastics accurately under various conditions.  

 

Lorenzo-Navarro et al. [18] aimed to identify and classify microplastic particles into categories based on shape: lines, 

pellets, fragments, tar, and organic particles, and evaluate different machine-learning approaches. Images were captured 

using Epson Perfection V800 and the segmentation step used the Sauvola Thresholding Method, followed by feature 

extraction using Local Binary Pattern. 5 different classifiers were tested: K Nearest-Neighbour, C4.5, Support Vector 

Machine and Random Forest, and a cascade classifier which follows a sequential progression and uses all 4 classifiers. The 

cascade classifier was found to have the highest accuracy. As different texture features seem to negatively affect certain 

classifiers, it was advantageous to apply a multilayer cascade classifier. While their previous study evaluated different 

approaches, in another study by Lorenzo-Navarro et al. [19]  they used a VGG-16 classifier model to classify microplastics.  

 

The novelty lies in the fact that this architecture does not require microscopes or expensive equipment, instead microplastic 

detection can be carried out with a mobile phone alone, and can be applied to particles larger than microplastics. Their 

classifier yielded a higher accuracy than computer vision techniques and manual inspection. According to Zoe Moorton et 
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al., [20] their CNN models can be used to successfully classify debris without disrupting aquatic life, particularly when 

using transfer learning on VGG-16.  They utilized a binary classification to distinguish synthetic material from aquatic life 

using a unique collection of 1644 underwater photos. Grant-Jacob et al. [21] developed a real-time sensor based on the 

principles of scattering of light for detecting microplastics and salinity. It used a Neural Network with Raspberry Pi. While, 

in itself, it does not constitute a portable microplastic detection device, it has great potential for such a device.  

 

Although previous work has established machine learning as a powerful tool for microplastic detection, a portable, real-

time detection and classification device is yet to be developed. Hence, this research paper focuses on developing a CNN-

based model in a portable Raspberry Pi device for detecting and classifying microplastics. 

 

METHODOLOGY 

 

The primary objective of this study is to develop and validate a cost-effective, portable system for the detection of 

microplastics in water samples. Microplastics can be classified on the basis of polymer types: HDPE, polyethylene, nylon, 

microbeads, polyurethane, and polystyrene. These microplastics come from a variety of products, including plastic ones, 

fabrics, and toiletries. All polymer types have been found in a variety of aquatic ecosystems, including lakes, oceans, rivers, 

etc. These bodies of water prove to be important research sites for analysing the extent of microplastic pollution. For 

example, lakes offer important insights into freshwater contamination, and ponds, which may be found in many different 

places, serve as localised markers of microplastic presence. To evaluate the environmental impact of microplastics in 

aquatic habitats and protect both ecosystems and human health, it is crucial to have a comprehensive understanding of their 

distribution and types. 

 

The primary objective of this study is to develop and validate a cost-effective, portable system for the detection of 

microplastics in water samples. Microplastics can be classified on the basis of polymer types: HDPE, polyethylene, nylon, 

microbeads, polyurethane, and polystyrene. These microplastics come from a variety of products, including plastic ones, 

fabrics, and toiletries. All polymer types have been found in a variety of aquatic ecosystems, including lakes, oceans, rivers, 

etc. These bodies of water prove to be important research sites for analysing the extent of microplastic pollution. For 

example, lakes offer important insights into freshwater contamination, and ponds, which may be found in many different 

places, serve as localised markers of microplastic presence. To evaluate the environmental impact of microplastics in 

aquatic habitats and protect both ecosystems and human health, it is crucial to have a comprehensive understanding of their 

distribution and types. 

 

Table 1 Microplastics found in the number of Samples collected 

 

 
 

First, ten contaminated water samples were methodically gathered from each location (lake, pond, river, creek) across 

Mumbai in glass test tubes. These samples were separated manually and then processed in the lab using spectroscopy to 

analyze the polymer type. The polymer types and sources are outlined in Table 1. Different mixtures of polymer samples 

and pure water and combinations of polymer samples and wastewater were placed under a microscope of 40x 

magnification. Images were captured for each sample. The collected data was then labeled using the Makesense.ai tool [22] 

and a CSV file was generated. The CSV file was then fed into the CNN Model. 

 

CNN is a valuable deep-learning tool for object detection and image classification. This CNN model was built using the 

Keras framework as the basis of the code. The model includes key convolutional layers for feature extraction, max-pooling 

layers for downsampling, dense layers for decision-making, and dropout layers for regularisation. The dataset created from 

the microscope images was used to train our CNN model, including representing the training accuracy and  training loss. A 

confusion matrix helps further evaluate the performance of the model further (Fig 8). The algorithm also identifies the 

density of microplastics in a given image through the following procedure: first, the images are converted from RGB to 

greyscale, thresholding is used to make binary masks, and contour detection is used to determine the density of 

microplastics inside a defined region of interest. It then generates time series plots and bar charts to help visualize the 
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microplastic density on different days. This is a crucial component of a larger effort aimed at thorough microplastic data 

processing and visualisation via machine learning methods. 

 

 
 

Fig 4 Polyester and Microbeads found in a sample collected from ponds and rivers 

 

 
 

Fig 5 Annotated Images of Polyester and Microbeads 

 

The device as shown in figure 6 consists of a 100-x zoom adjustable microscope. The CNN code is converted into a tflite 

file so that the inference can be deployed on a Raspberry Pi. the device and enclosed the 3.3 inch display that displays 

inferedreults and also log the data with local database 

 

 

 
 

Fig. 6 The Prototype 

 

 
 

Fig. 7 CNN Model Architecture (Image Credit:https//what-is-convolutional-neural-network-cnn-deep-learning-

b3921bdd82d5) 
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The confusion matrix that was generated by the model The model performs admirably for the bulk of the test cases, 

according to the confusion matrix. There are times when the model generates false positives and false negatives. 

 

RESULTS 
 

The CNN model excels at accurately identifying microplastics in images. It can successfully uncover intricate correlations 

and patterns between pixels that indicate the presence of microplastics and the type of polymer thanks to its convolutional 

layers. The knowledge of these visual patterns that the model has acquired allows it to correctly recognize microplastics in 

new, previously unknown photographs after sufficient training. This ability offers enormous promise for a range of 

applications, such as preserving the environment, ensuring industrial quality, and safeguarding aquatic ecosystems. With 

thorough training and optimization, the CNN model can perform and achieve astounding levels of accuracy, making it seem 

like a potent tool for identifying microplastics. The model's accuracy is 0.97%, and the F1 score is 1.0 

 

 
Fig 8 Confusion matrix showing the model's performance 
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